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The effect of an external force on the kinetics of diffusion-assisted escaping of Brownian particles from a
potential well is analyzed in detail. The analysis is made within the two-state model (TSM) of the process
which is known to be valid in the deep well limit in the absence of external force. The generalized variant
of the TSM, taking into account the effect of the force, is shown to be quite accurate as well for some shapes
of the well. Within the generalized TSM, simple expressions for the well depopulation kinetics and, in particular,
for the escape rate are obtained. These expressions show that the effect of a force (F) manifests itself in the
escape rate dependence on only one parameter � ) Fa/(2kbT), where a is the Onsager radius of the attractive
part of the well U(r), defined by the relation |U(a)| ≈ kbT. The limiting behavior of this dependence in the
cases of weak and strong force is analyzed in detail. Possible applications as well as the relation of the results
of the analysis to those obtained earlier are briefly discussed.

I. Introduction

The effect of external force on mechanisms and kinetic
properties of condensed phase diffusion-assisted reaction pro-
cesses is considered in a large number of works both experi-
mentally and theoretically.1-4 The active interest of scientists
to this phenomenon results from its great practical importance.

One of the most important systems, in which the force effect
is investigated very thoroughly, is recombining geminate ion
pairs, undergoing relative diffusion in the electric field.2,3,5,6 Most
of theoretical studies analyze the kinetics of the recombination
process within the simplest model, which reduces the problem
to solving the Smoluchowski equation for the probability
distribution function (PDF) of particles diffusing in a pure
Coulomb potential (with an external force) and reacting with
the rate highly localized at short distances.2,7-9 Even in this most
simple formulation, the problem can, in general, be solved only
numerically, though detailed analytical analysis of some simple
variants of the problem has also been made,2,7 for example,
within the prescribed diffusion approximation.10

Recent advances in time-resolved studies of charge transfer
and escaping processes in fast geminate reactions19 and, in
particular, geminate reactions involving ions and ion pairs in
nonpolar and polar liquids11-26 inspire further development of
theoretical methods of the analysis of the considered problem.
The main challenge of the theoretical studies consists in the
correct description of the manifestation of specific features of
the interparticle interaction (in real liquids) in the reaction
kinetics in a tractable form simple enough to be suitable for
applications.

In the majority of above-mentioned theoretical works no
specific features of the form of the interaction potential for the
probe (Brownian) particles at short distances (of order of
molecular size) have been taken into account. In the condensed
phase, however, the distance dependence of the potential at short
interparticle distances r can be strongly modified by interaction
of particles under study with those of the medium.2 This
modified interaction is usually characterized by the so-called
mean force potential (MFP), which in a physically reasonable
form incorporates the medium effect and, in particular, discrete-
ness of the medium at short distances. The interaction with

medium particles is known to result in the wavy behavior of
the MFP at short distances. Moreover, in some systems the
medium effect results in the well-type shape of the MFP at short
distances (see Figure 1) with a markedly high barrier at distances
r of the order of the distance of closest approach d. This effect
is found, for example, in the case of ion pairs in polar
liquids.2,27,28

Concerning the applicability of well-type approximations for
the real MFPs, it is also worth mentioning the additional reason:
from mathematical and kinetic points of view any attractive
potential can be considered as well-shaped in the absence of
(or low) reactivity of particles at r ∼ d. The only difference of
this type of wells from those shown in Figure 1 is in their cusp
shape at r ∼ d.

The well-type shape of the MFP (with the reaction barrier at
r ∼ d) results in the formation of the quasi-equilibrium state
within the well, which can be considered as a cage. In the
absence of external force, the kinetics of diffusion-assisted
depopulation of the initially populated cage state is analyzed in
detail in a number of papers.29-32 In the limit of deep well depth,
the problem is shown to be accurately described with the two-
state model (TSM), i.e., the model of two kinetically coupled
states: the quasi-equilibrium localized state within the well and
the free diffusion state outside the well.31

The TSM enables one to obtain the well depopulation kinetics
in a relatively simple analytical form. The kinetics, determined
by the monomolecular reactive crossing over the barrier at r ∼

Figure 1. The picture of the interaction potential u(r) ) U(r)/(kBT)
for two models of its shape: narrow (dashed) and wide (full) well; an

and aw are the Onsager radii for these models (defined by u(aν) ) 1 (ν
) n, w)), d is the distance of close approach, and rb is the coordinate
of the bottom.
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d and escaping from well (cage), appears to be nonexponential,
in general. In the limit of a deep well, however, the deviation
from the exponential kinetics is shown to be fairly small.30,31

In this paper we generalize the TSM to describe the effect of
the external force on the well depopulation kinetics. We assume
that effect results only from the force-induced change of the
rate of escaping from the well without changing the reaction
rate in the well.

Within the generalized TSM we derive simple formulas for
the well depopulation (or escaping) kinetics for different models
of the well shape. Moreover, taking into account that in the
limit of a deep well (which is of main interest in the discussion)
the kinetics is close to exponential, special attention is paid to
the analysis of the escape rate. The analysis shows that the
specific features of the force effect on the escape rate depends
on the well shape. This effect can be characterized by the rate
dependence on the only parameter. In the cases of weak and
strong force the limiting analytical expressions for this depen-
dence are obtained and briefly discussed.

Some possible applications of obtained results are also
discussed. It is shown that derived formulas are fairly useful
for the analysis of different experiments. As examples we
considered recent (time-resolved) experiments on liquid phase
chemical reactions,19-22 transient photocurrents arising from
dissociation of exciplexes in solutions,24-26,33 and the kinetics
of colloidal particle trapping into and escaping from the optical
force induced potential well (tweezers).34,35

II. Formulation of the Problem

The main purpose of the work is to analyze the kinetics of
diffusion-assisted escaping of the Brownian particle from the
MFP well U(r) in the presence of the external force -F, i.e.,
escaping from the well of the potential Uf ) U(r) + (F · r),
where r is the vector of the particle position. For definiteness
we assume that the force is directed along the axis z: F ) (0,
0, F).

The well U(r) is suggested to be spherically symmetric: U(r)
≡ U(r) ) (kBT)u(r), and centered at r ) 0. The dependence of
U(r) on the distance r ) |r| is schematically pictured in Figure
1. The well will be characterized by three parameters: the
distance a (called hereafter the Onsager radius), at which U(a)
≈ kBT, defined as

(in Figure 1 an and aw denote the radii in two models of the
well shape, discussed in section V), the distance of closest
approach d, and the radius rb of the well bottom whose energy
is U(rb) ) -Ub ) -(kBT)ub. At r ∼ d the MFP U(r) is assumed
to be of the shape of a barrier, diffusive crossing over which
models the reaction in the well.

The diffusive space-time evolution of the Brownian particle
is described by the PDF F(r, t), which in spherical coordinates
r ) (r sin θ cos φ, r sin θ sin φ, r cos θ) depends, in general,
on all three variables (r, θ, φ). However, in the case of isotropic
diffusion and initial condition F(r, t ) 0) ) Fi(r), considered in
this work, the PDF F(r, t) is independent of the azimuthal angle
φ so that F(r, t) ≡ F(r, θ|t). In our analysis we will assume that
particles are created within the well at initial distance ri ∼ rb

The PDF F(r, θ|t) satisfies the Smoluchowski equation

where ∇r is the gradient operator

with u(r) ) U(r)/(kBT) and f ) F/(kBT), is the dimensionless
MFP, and D is the diffusion coefficient for the particle, assumed
to be independent of r (though some possible effects of D(r)-
dependence can also be studied).

Note that the reaction kinetics for pairs of interacting
Brownian particles, say a and b, is described by an equation
similar to eq 2.3 with r ) ra - rb and parameters expressed in
terms of those for separate particles.2,6

In the absence of force, the kinetics of escaping from the
potential well was analyzed earlier.29-32 Here we extend the
approach applied in these works to describe the effect of external
force. The approach is based on the approximate solution of eq
2.3 in the limit of a deep well by expansion in the small
parameter τc/τe , 1, where

are the time of equilibration within the well and the time of
escaping from the well, respectively.30,31

Analysis of this solution shows31 that in the lowest order in
τc/τe , 1 the Smoluchowski approximation 2.3 is equivalent to
the TSM (see section III).

III. Two-State Model

Originally, the TSM was proposed to treat the kinetics of
diffusion-assisted escaping from the well in the absence of force,
when eq 2.3 is spherically symmetric. In this case the TSM is
shown to be equivalent to the Smoluchowski approach30,31 in
the lowest order in τc/τe ∼ e-ua , 1.

In the presence of force [f ) F/(kBT) * 0], however, the
potential uf(r) ) u(r) + (f · r) in eq 2.3, is anisotropic, which
results in the dependence of F(r, t) on polar angle θ: F(r, t) ≡
F(r, θ|t). In this case the TSM turns out to be valid for a variety
of shapes of the well u(r) (though some additional remarks on
validity are needed (see section IV))].

A. General Kinetic Equations. In general, the TSM de-
scribes the process as the evolution of two kinetically coupled
states: the state localized within the well, whose population is
given by

and the free diffusion state outside the well (r > a) described
by the PDF c(r, θ|t). Within the TSM the effect of the force f
shows itself in the dependence of kinetic parameters on θ. The
form of this dependence is determined by the particular variant
of the model (see below).

In general, TSM kinetic equations, describing evolution of
PDFs n(θ|t) and c(r, θ|t) in the presence of an external force,
can be written as30,31

a ) (∫rb

∞
dr r-2eu(r))-1 (2.1)

F(r, t ) 0) ) Fi(r) ) (4πri
2)-1δ(r - ri) (2.2)

Ḟ ) D∇r[(∇rF + F∇ruf)] (2.3)

uf(r) ) u(r) + (f · r) (2.4)

τc ∼ (a - d)2/D, τe ∼ (a2/D)eub ∼ τce
ub (2.5)

n(θ|t) ) 4π∫d

a
dr r2F(r, θ|t) (3.1)

ṅ ) SaK+(θ)c(a|t) + [L̂c - (K-(θ) + wr)]n (3.2)
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where Sa ) 4πa2, L̂f ) D∇r(∇r + f) is the operator, describing
diffusion outside the well, and L̂c is the Smoluchowski operator
in {θ}-space which controls orientational relaxation of the PDF
in the well, and

is the rate of reaction in the potential well, in which lr )
(∫0

rb dr r-2eu(r))-1 and Zw is the partition function for the well
u(r) ) U(r)/(kBT) (in the absence of force (f ) 0)).30,31 The
parameters K+(θ) and K-(θ) are the rates of transitions between
the two states. Expression 3.4 corresponds to the simplest model
of reaction in the well treated as a reactive flux over a barrier
at r ∼ d. Equations 3.2 and 3.3, however, remain valid for any
other model of reactivity in the well as long as it predicts first-
order kinetics of reaction.

The essential difference of anisotropic equations from iso-
tropic ones consists in the orientation dependence of the rates:
K+(θ) and K-(θ). In the considered limit τc/τe , 1 we will
assume the transition rates K( to satisfy the relations31

Therefore in this limit θ-dependence of rates K((θ) show itself
in that of the equilibrium constant: Ke(θ).29-31 The form of the
function Ke(θ) is determined by the shape of the well. Some
model well shapes and corresponding Ke(θ) dependences, as
well as applicability of the corresponding TSMs, are discussed
below.

Equations 3.2 and 3.3 should be solved with boundary
conditions

the first of which describes reflection of particles (diffusing in
the state outside the well) at r ) a. The initial condition is
assumed to be isotropic and given by eq 2.2.

In what follows it will be convenient to represent functions
n(θ|t) and c(r, θ|t) in the form of vectors |n(t)〉 and |c(r, t)〉,
whose components are obtained by expansion of these functions
in the orthonornmal basis of properly normalized Legendre
polynomials (spherical functions)36

with l ) 0, 1, ...,

where for any vector |�(θ)〉, (� ) n, c), its components �l are
defined by �l ) 〈l|�〉 ) ∫0

π dθ sin θ Pl(cos θ)�(θ).

In terms of this vector representation the initial condition can
conveniently be written in the form, explicitly displaying its
independence of orientation

As for the initial condition, it is worth noting, in addition,
that in the most realistic limit of orientational relaxation within
the well much faster than the escaping from the well the
escaping kinetics is insensitive to the orientational dependence
of the initial condition.

B. Escaping Kinetics. Equations 3.2 and 3.3 can be solved
by the method used in the absence of force, but with the use of
expansion of n(θ|t) and c(r,θ|t) in spherical functions |Yl〉, i.e.,
vector representation |n(t)〉 and |c(r|t)〉 (see eq 3.8]. The solution
yields for the Laplace transform

where |ni〉 ) (1/2π)|0〉. The operator

determines the generalized ε-dependent escape rate (see below).
In eq 3.12 K̂e is the equilibrium constant in the operator form
(this operator representation results from K̂e dependence on the
angle θ) and Ĝ(a,a|ε) is the evolution operator for diffusive
motion outside the well (evaluated at r ) ri ) a)

where � ) fa/2 and Λ̂f ) D(L̂r + r-2L̂θ - f2) is the auxiliary
operator in which

and L̂r ) Dr-2∇r(r2∇r) are the operators of free orientational
and radial diffusion, respectively.

In what follows we will restrict ourselves to the analysis of the well
depopulation kinetics nj(t), whose Laplace transform is given by

Thus the problem of the analysis of the kinetics consists in
the evaluation of the matrix Ŵe(ε) which reduces, in fact, to
the calculation of the operator Ĝ-1(a,a|ε). Mathematical details
of the evaluation are given in the Appendix. The final expression
is written as

ċ ) L̂fc + [Sa
-1K-(θ)n - K+(θ)c]δ(r - a) (3.3)

wr ) (Dlr/Zw), Zw ) ∫d

a
dr r2e-u(r) (3.4)

K( f ∞ and K-(θ)/K+(θ) ) Ke(θ) (3.5)

(∇r + f cos θ)c|
r)a

) 0 and c|
rf∞
f 0

(3.6)

|l〉 ) (l + 1
2)Pl(cos θ), 〈l| ) ∫0

π
dθ sin θPl(cos θ) ...

(3.7)

|n〉 ) ∑
l)0

∞

nl|l〉 and |c〉 ) ∑
l)0

∞

cl|l〉 (3.8)

|Fi〉 ) (2πri
2)-1|0〉δ(r - ri) (3.9)

|ñ(ε)〉 ) ∫0

∞
dte-εt|n(t)〉 (3.10)

|ñ(ε)〉 ) [ε + wr - L̂c + Ŵe(ε)]-1|ni〉 (3.11)

Ŵe(ε) ) Ĝ-1(a, a|ε)K̂e (3.12)

Ĝ(a, a|ε) ) 〈a|(ε - L̂f)
-1|a〉 (3.13)

) e-� cos θ〈a|(ε - Λ̂f)
-1|a〉e� cos θ

L̂θ ) (sin θ)-1∇θ(sin θ∇θ) ) -∑
l)0

∞

l(l + 1)|l〉〈l|

(3.14)

ñ̄(ε) ) 2π∫0

π
dθ sin θñ(θ, ε) ≡ 2π〈0|ñ(ε)〉

(3.15)

) 〈0|[ε + wr - L̂c + Ŵe(ε)]-1|0〉

Escape of Brownian Particles J. Phys. Chem. A, Vol. 113, No. 32, 2009 9067



Here

and the operator q̂K(ε) is defined by fomula

in which qKl
(ε) ) a-1[l + �εKl-1/2(�ε)/Kl+1/2(�ε)] (see Appendix)

with

For our further analysis of the kinetics nj(t) we need to specify
the operator L̂c describing orientational relaxation in the well.
Naturally it should be of the Smoluchowski-like form

where Dc ∼ D/rb
2 is the orientational diffusion coefficient uj(θ)

is the effective orientational potential which is determined by
the shape of the well (see below).

Moreover, in the considered limit of large well depth it is
quite natural to assume that orientational relaxation is much
faster than well depopulation.

C. Fast Reorientation in the Well. The fast orientational
relaxation limit implies that Dc . τe

-1. This relation means that
after some time ∼τc ∼ Dc

-1 of orientational relaxation (of the
initial population in the well) the vector of well population |n(t)〉
remains close to the equilibrium one |Ψe〉 during the process

where

Note that within bra-ket notation the adjoint vector 〈ψe|
coincides with 〈0|: 〈Ψe| ) 〈0| ) ∫0

π dθ sin θ, ..., which can be
confirmed by the relation 〈Ψe|L̂c ) 0 directly following from
the definition of L̂c (see eq 3.20). With the use of this formula,
one can easily find that |Ψe〉 satisfies the normalization condition
〈Ψe|Ψe〉 ) 1.

In what follows we will restrict ourselves to the analysis of
the escaping kinetics just in this limit of fast orientational
relaxation.

For fast orientational relaxation the splitting δLc of eigen-
values of the operator L̂c (δLc ∼ Dc) is much larger than |Ŵe|
∼ we

0. In such a case in the lowest order in the parameter we
0/

Dc , 1 we can significantly simplify the general expression
for ñ0(ε) (eq 3.15) and thus for the inverse average lifetime wj 0

) τj0
-1 ) [∫0

∞ dt n(t)]-1 ) ñ0
-1(0) as follows

and

where

and

Equation 3.23 presents the main result of the work for the
kinetics of the well depopulation in the limit of fast orientational
relaxation.

It is interesting to note that formula 3.23 predicts simple
expressions for the total probabilities (or yields) Pr ) wr∫0

∞ dt n(t)
and Pe ) 1 - Pr of geminate reaction and escaping, respectively

The depopulation kinetics predicted by formulas 3.23 and
3.24 essentially depends on the well shape, determining the
orientational potential uj(θ) in the Smoluchowski-type operator
L̂c (eq 3.20) and, therefore, the equilibrium state |Ψe〉. In our
work we will consider two realistic models of the well shape
in which simple expressions for well depopulation kinetics can
be obtained.

IV. Two Types of Well Shapes

In this section we will analyze the specific features of mean
escape rate we for two variants of the well shape: (1) The narrow
well shape (shown in Figure 1 by dashed line with a ) an), for
which a - d , d and the time of equilibration in the well τc ∼
(a - d)2/D , a2/D , τe, where τe is the escaping time (see eq
2.5); (2) The wide well shape (full line in Figure 1 with a )
aw), corresponding to a small distance of closest approach d ,
a (for which one gets fd , 1 even at fa g 1).

The analysis will be made in the limit of fast orientational
relaxation in the well with the use of eq 3.23 for the well
depopulation kinetics.

A. Narrow Well Shape. In the case of a narrow well, when
a - d , d, the well is of the shape of an attractive well layer
near the distance of closest approach d. In this limit within the
wide region force strengths f < 1/(a - d) we can neglect the
effect of the force on the radial shape of the well and take into
consideration only the dependence of well depth uj(θ) on the
orientation angle θ

with f ) |f| > 0, and the force effect on free diffusion in the
state outside the well. In eq 4.1 we took into account the
smallness of the width of the well, a - d , d, which leads to
the high accuracy of the relation frb ≈ fa.

It is important to note that the small value of the well width
and, therefore, fast equilibration of the well population in radial

Ĝ-1(a, a|ε) ) D[q̂ + e-� cos θq̂K(ε)e� cos θ] (3.16)

q̂ ) a-1(1 - � cos θ) with � ) fa/2 (3.17)

q̂K(ε) ) ∑
l)0

∞

|l〉qKl
(ε)〈l| (3.18)

�ε ) �(1 + ε/εf)
1/2, εf )

1
4

Df2 ) (D/a2)�2

(3.19)

L̂c ) Dc(sin θ)-1∇θ[sin θ(∇θ + ∇θuj)] (3.20)

|n(t)〉 ≈ nj(t)|Ψe〉 (3.21)

|Ψe〉 ) Zθ
-1e-ujb(θ), Zθ ) ∫0

π
dθ sin θe-ujb(θ)

(3.22)

ñ̄(ε) ) [ε + wr + we(ε)]-1 (3.23)

wj 0 ) wr + wj e

we(ε) ) 〈Ψe|Ŵe(ε)|Ψe〉 (3.24)

wj e ) we(0)

Pr ) wrñ̄(0) ) wr/wj 0 and Pe ) wj e/wj 0 (3.25)

ujb(θ) ≈ uf(rb, θ) ≈ ub + fa cos θ (4.1)
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direction ensures the validity of the description of the kinetics
in terms of the angular coordinate dependent well population
n(θ|t) introduced above. Noteworthy is also that the negligible
force affected change of the well shape results in the absence
of the dependence of the detailed balance relation and the
equilibrium constant Ke(θ) on the angle θ. In such a case Ke(θ)
is given by the relation30,31

in which the effective partition function Zw is given in eq 3.4,
i.e., is controlled by the shape of the potential u(r) without
external force, despite a possible strong force effect on the
energy of the bottom predicted by eq 4.1. This is because the
external force leads to the identical change of both the bottom
energy ujb(θ) ≈ ub + fa cos θ and the energy of the free diffusion
state at r ) a: uf(a, θ) ≈ fa cos θ.

The potential ujb(θ) determines the kinetics of orientational
relaxation of the population in the well, which is described by
the Smoluchowski operator (3.20) with

where

In this case the equilibrium state within the well is written as

with

Substituting formula 4.4 into the expression 3.24 and taking
into account the relation37 e(� cos θ ) (2π/�)1/2 ∑l)0

∞ ((1)l(l +
(1/2))Il+(1/2)(�)Pl(cos θ), we get

In this formula30,31

is the escape rate in the absence of a force30,31 and

where

with �ε ) �(1 + ε/εf)1/2 (eq 3.19) and Iν(x) and Kν(x) being the
modified Bessel functions.37

The function we(ε) is fairly complicated so that, in general,
the well depopulation kinetics n(t) can hardly be obtained in
analytical form. In the considered limit of a deep well, however,
the main ε dependent contribution ∼�ε comes from the term
with l ) 0 of the sum in eq 4.7. The ε-dependence of other
terms with l g 1, which are of higher order in �ε (∼�ε

2), can
be neglected by taking �ε ≈ �ε)0 ) �. In so doing one gets

where σ�(ε) ) (�ε/� - 1) tanh � ) ((1 + ε/εf)1/2 - 1) tanh �

wj e ) we(ε ) 0) (see eq 3.24) and εf ) (D/a2)�2.
The inverse Laplace transformation of thus obtained n

=
(ε)

yields32

where εf ) εf/w�, w� ) wr + wj e - we
0 tanh �, and

with

The dependence 4.11 can be expressed in terms of the error
function.32 In the absence of force formula 4.11, naturally,
reduces to that derived earlier for � ) 0:30,31

where w0 ) wr + we
0 and γ0 ) (we

0/w0)1/2γe.
Here we are not going to discuss general properties of the

kinetics nj(t) but restrict ourselves to the qualitative analysis of
its asymptotic behavior at short and long times in the limit γe

, 1, corresponding to the case of a deep potential well, and in
the most realistic case of relatively weak force, in which εf < 1,
i.e., D/wj 0 < 4/f2. For γe , 1 at relatively short times t <
wj 0

-1 ln(1/γ�) ∼ wj 0
-1 ln(1/γ0) the kinetics is exponential,30,31

nj(t) ≈ e-wj0t (wj 0 ) wr + wj e). In the opposite case t . wj 0
-1

ln(1/γ�) the dependence nj(t) is nonexponential:30,31 nj(t) ∼
t-3/2e-εft. In the absence of force (εf ) 0) the kinetics at long
times becomes of inverse type power,30,31 as expected. Note that
for weak force � , 1 the parameter εf is small: εf ∼ �2, and
can be neglected. This means that in the weak force limit with

Ke(θ) ) Ke
0 ) a2/Zw (4.2)

uj(θ) ) ujb(θ) - ub ) 2� cos θ (4.3)

� ) fa/2

|Ψe〉 )
e-2� cos θ

Z0(�)
(4.4)

Z0(�) ) sinh(2�)
�

we(ε)/we
0 ) 1

2
+ � coth(2�) + S�(ε) (4.5)

we
0 ) we(� ) 0, ε ) 0) ) Da/Zw (4.6)

S�(ε) ) 2π
�Z0(�) ∑

l)0

∞

(l + 1
2)Il+1/2

2(�)ql(�ε) (4.7)

ql(�ε) ) aqKl
(ε) ) l + �εKl-1/2(�ε)/Kl+1/2(�ε)

(4.8)

S�(ε) ≈ Sj� + σ�(ε) and we(ε) ≈ wj e + we
0σ�(ε)

(4.9)

Sj� ) S�(0) ) 2π
�Z0(�) ∑

l)0

∞

(l + 1
2)Il+1/2

2(�)ql(�)

(4.10)

nj(t) ) 1
2πi ∫-i∞+0

i∞+0
dε

exp[ε(w�t)]

1 + ε + γ̄(εf + ε)1/2
(4.11)

γ̄ ) �we
0

w�

tanh �
�

γe (4.12)

γe ) �a2we
0

D

nj�)0(t) )
1

2πi ∫-i∞+0

i∞+0
dε

exp[ε(w0t)]

1 + ε + γ0ε
1/2

(4.13)
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high accuracy the kinetics nj(t) coincides with that for � ) 0 in
which w ) w0. Detailed analysis of specific features of the
kinetics predicted by formulas 4.11 and 4.12 is made in ref 32.

It is easily seen that in the considered limit of a deep well
the nonexponential tail of the kinetics nj(t) is small tending to
zero as the force strength is increased. In such a case the effect
of force � on the escaping kinetics reduces to that on the mean
escape rate wj e(�) ) we(ε ) 0, �)

Formula 4.14 shows that the force effect on the rate is
characterized by only one parameter � ) fa/2. The numerically
calculated universal function Qn(�) is displayed in Figure 2.
Important specific features of Qn(�) dependence are demon-
strated by limiting behavior at the weak (� , 1) and strong (�
. 1) forces.

For the weak force Qn(�) can be obtained by the analysis of
the first term (with l ) 0) of the sum Sj(�) in eq 4.14. In the
opposite strong force limit, one can derive the expression for
Qn(� . 1) by taking into account that at � . 1 the escaping
process is, actually, one-dimensional, for which the Q(�) factor
is given by the expression32 w1 ) Df/Zw

(1), in which Zw
(1) )

∫d
a dr e-u(r) ≈ Zw/a2 is the one-dimensional partition function.

Calculation in both limits yields

These limiting results can be combined into a simple
interpolation formula

reproducing function Qn(�), numerically evaluated with eqs 4.10
and 4.14, within accuracy ∼1% (see Figure 2).

B. Wide Well Shape. Another form of the well shape, in
which analysis of the force affected well depopulation kinetics
and, in particular, the escape rate wj e(�) can be made analytically,
corresponds to the small distance of closest approach, or large

a, for which d ∼ rb , a. In this case in a fairly wide region of
relatively strong force f < 1/d, 1/rb the escape kinetics is fairly
accurately described by the TSM (3.3).

It is important to note that the inequality frb < 1 ensures quite
high accuracy of the approximation neglecting the effect of force
on the well shape in the region near the bottom. In this
approximation, the quasi-equilibrium population distribution
within the well is isotropic: |Ψe〉 ) |0〉. This, in turn, means
that the partition function Zw is independent of the angle θ and
is given in eq 3.4.

In the wide well case the force effect manifests itself in the
anisotropy of the activation energy of escaping from the well
ua(θ) ≈ uf(θ, a): ua(θ) ≈ ub + 2� cos θ, which leads to the
anisotropy of the detailed balance relation, i.e., the anisotropy
of the equilibrium constant

where Ke
0 is the isotropic equilibrium constant in the absence

of force. The relation is based on the reasonable assumption on
approximate local equilibrium of the population outside and
inside the well in the region r ≈ a at each θ. The accuracy of
this approximation becomes especially high in the strong force
limit: � > 1, so that the model (4.17) will give a quite accurate
interpolation formula for the kinetics n(t).

The TSM with θ-dependent equilibrium constant Ke(θ) is a
quite reasonable approach for the analysis of the kinetics of the
escaping process, which enables one to relatively easily describe
the specific features of the force dependence of this kinetics, in
particular, in the limits of weak and strong external force (see
below).

The expression for the escaping kinetics can straightforwardly
be derived with the use of general formulas 3.23 and 3.24 and
some results obtained above in the limit of narrow potential
well. The fact is that, in the mathematical form, the average of
any operator multiplied by an angular-dependent equilibrium
constant (4.17) (of type of eq 3.24) over the isotropic equilibrium
state |Ψe〉 ) |0〉 is similar to the average over the equilibrium
distribution (4.4), except for the partition function Z0(�) (eq
4.4), which should be replaced by Z0(�f 0) ) 2 corresponding
to the isotropic distribution. These simple algebraic manipula-
tions result in the same kinetics nj(t) (4.11) with a simple change
of the value of wj e. In particular, for wj e(�) we get

where Z0(�) and Qn(�) are determined in eqs 4.4 and 4.14,
respectively. Here the auxiliary rate parameter we

0e2� is the
escape rate in the absence of the force but with the activation
energy ua*, corresponding to the orientation θ ) π (most
favorable for escaping): ua* ≡ ua(θ ) π) ) ub - 2�.

As in the case of a narrow well the force effect on wj e is
characterized by only one parameter �. The function Qw(�),
which determines the pre-exponential factor in the activation
type dependence of wj e(�), is displayed in Figure 2. The
numerical results show that Qw(�) monotonically decreases
(with increasing �) with

Figure 2. The force (� ) fa/2) dependence of dimensionless escape
rates Qν(�) for narrow (ν ) n) and wide (ν ) w) wells, calculated
with exact eqs 4.14 and 4.18 (full lines) and interpolation formulas
(4.16) and (4.20) (triangles). Shown also is the dependence of the
dimensionless difference of rates δQw(�) (see eq 5.2_ calculated with
the exact formula (full line) and the interpolation expression 4.20
(squares).

wj e(�)/we
0 ) Qn(�) ) 1

2
+ � coth(2�) + Sj�

(4.14)

Qn(� , 1) ≈ 1 + � and Qn(� . 1) ≈ 2�
(4.15)

Qn(�) ≈ Qn
(i)(�) ) 1 + �(2 - e-�) (4.16)

Ke(θ) ) Ke
0e-2� cos θ (4.17)

wj e(�)/(we
0e2�) ) Qw(�) ) 1

2
Z0(�)e-2�Qn(�)

(4.18)

Qw(� , 1) ≈ 1 - � and Qw(� . 1) f
1
2

(4.19)
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This limiting behavior of the function Qw(�), looking unex-
pected at first sight, can easily be understood.

In the weak force limit (� , 1) the behavior of Qw(�) differs
from that of Qn(�) (Qw(�) decreases with increasing �) due to
the use of �-dependent normalizing rate we

0e2� (instead of we
0)

in the definition of Qw(�).
For � . 1 the force strongly affects wj e, first of all, by

significant change of the activation energy of the process. The
obtained Qw(� . 1) independence can easily be understood by
taking into account that, according to formula 4.17, in the case
of wide well for strong external forces the flux of escaping
particles is highly localized in a small region of orientations
(small patch) of radius δθ ) π - θ e 1/�1/2 , 1. The escape
rate is determined by the total flux Jw through this region of
size sw ∼ (δθ)2 ∼ �-1. In the strong force limit � . 1 the flux
Jw ∼ �, as it follows from eq 4.15, so that Qw(�) ∼ swJw ∼
constant. The exact estimation Qw(� f ∞) ) 1/2 can be
obtained by substituting the limiting expression 4.15 into eq
4.18.

Note that in both cases of narrow and wide wells for � . 1
the escape rate is determined by the quasi-one-dimensional flux
of escaping particles. The mechanism of formation of this flux
is, however, different in these cases: for narrow wells the one-
dimensional regime results from high localization of the well
population in the small region at θ ∼ π, while for wide wells
it is caused by strong localization of favorable transition rates
in this region.

A simple interpolation expression for Qw
(i)(�) can be derived,

for example, with the use of similar formula for Qn(�) presented
in eq 4.16:

High accuracy of this formula is demonstrated in Figure 2.

V. Discussion and Applications

A. General Remarks. This work concerns detailed theoreti-
cal study of the effect of the external force f ) F/(kBT) on the
kinetics of diffusion-assisted depopulation of a deep isotropic
potential well. Fairly simple matrix expressions for the depopu-
lation kinetics are obtained and thoroughly analyzed.

In our work we have concentrated on the analysis in the most
physically reasonable limit of fast orientational relaxation of
the population in the well. In this limit the analytical expression
for the depopulation kinetics is derived which is valid in the
wide region of parameters of the model. The total average
depopulation rate in this case is shown to be a sum of reaction
and escape rates. In our work we have mainly studied the
specific features of the escape rate wj e whose value appears to
strongly depend on the well shape. Analytical expressions for
wj e(f) are obtained for two limiting types of well shapes: narrow
wells for which a - d < d and wide wells with large effective
Onsager radius a > d.

In the case of a narrow well, the effect of the force on the
escape rate is fairly strong but shows itself only in the
preexponential factor of the Arrhenius-type dependence of
the rate without strong effect on the activation energy. In the
case of a wide well, however, the force affects not only the
preexponential factor but the activation energy as well.

It is worth noting that the force effect on the diffusion-assisted
processes in the presence of interaction between particles is
studied in a number of works (see, for example, refs 2 and 3).

Especially comprehensively this effect (electric field effect) is
analyzed in the case of an ion pair recombination reaction.

Unfortunately it is difficult to compare the results of earlier
studies with results obtained above because of essential differ-
ence in models of interparticle interaction applied. In particular,
in these studies ion pair recombination was usually treated as
diffusion in pure Coulomb potential with high reactivity at a
contact, which does not result in a well.2,5,6 It is, nevertheless,
interesting to note that in the weak force limit fa , 1 the force
affected probability of escape from the Coulomb potential was
found to be represented as Pe(f) ≈ Pe(f ) 0)(1 + fa/2).6 This
dependence is in apparent agreement with the field dependence
of the escaping probability Pe obtained in our work, which in
the appropriate limit wj e/wr , 1 is represented as Pe ) wj e/wj 0 ≈
wj e/wr (see eqs 3.25 and 4.15).

Noteworthy is also that in the strong force limit the escaping
process becomes nearly one-dimensional for both well shapes
considered. In this limit the escape rate is determined by the
flux in the small region of favorite orientations with θ ∼ π.
This fact allows one to improve the TSM, in which the force
effect on the location of the barrier top (at r ) a) is originally
neglected. Moreover, in the strong force limit one can also take
into account the smoothness of the shape of the realistic barrier
near the top, which in the TSM is assumed to be of cusp shape.

In our work we restricted ourselves to the analysis of the
most realistic limit of fast orientational relaxation within the
well. In reality, however, general formula 3.15 also describes
the manifestation of finite relaxation time. The effect is, of
course, largest in the absence of relaxation (L̂c ) 0). In this
case the angular dependent equilibrium rate Ke(θ) results in the
nonexponential kinetics n(t), represented as a sum of exponential
contributions with θ-dependent rates, coming from different
orientations.

Concluding this discussion, note that this work considered
the force effect on three-dimensional diffusion assisted escaping.
The proposed TSM, however, can be applied to the analysis of
two-dimensional processes as well. The corresponding results
will be published elsewhere.38

Our further discussion concerns applications of obtained
results to the analysis of some processes recently actively studied
experimentally.

B. Condensed Phase Reaction Kinetics. 1. Time-Depend-
ent Reaction Yield. The obtained formulas are very suitable
for the analysis of diffusion-assisted condensed phase geminate
reactions. The effect of external force on escaping and reaction
yields is of special interest in the particular case of ion-pair
recombination reactions in polar solids and liquids, in which
the external force can be realized by applying an electric field.
There are a number of experimental time-resolved spectroscopic
studies of reactions with the participation of ions.1-4,11,13,19-23

Traditionally the results of such investigations are analyzed
with the use of model calculations in which interaction is
assumed to be pure Coulomb. It is worth noting, however, that
in polar media the medium affected interaction, which can be
described by the MFP, strongly deviates from the Coulomb
one:27,28 unlike the Coulomb potential the MFP oscillates at short
distances of order of molecular size.27,28 At distances close to
that of the first coordinate shell the MFP has a most deep well,
whose depth can be much larger than kBT for dielectric constants
ε > 15. In this case the proposed approximation of the MFP by
the well-type potential is much closer to reality than the pure
Coulomb potential approach.

Some of earlier results of the discussed TSM, concerning the
kinetics of processes in the absence of external force (f ) 0),

Qw(�) ≈ Qw
(i)(�) ) 1

2
Z0(�)e-2�Qn

(i)(�) (4.20)
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have already been successfully applied to the analysis of the
kinetics of some liquid-phase reactions.2,7-9 As for the results
obtained above for the case f * 0, note that the most convenient
for experimental analysis is not the force dependent inverse
mean lifetime wj 0(�) (see eq 3.24) but the difference wj 0(�) -
wj 0(0) ) wj e(�) - we

0, which is independent of the rate wr of
reaction in the well (assumed to be independent of �). In the
proposed dimensionless representation the parameters δwj 0 )
wj 0(�) - wj 0(0) are written as

The behavior of δQn(�) is similar to that of Qn(�) except
for evident displacement along the ordinate axis. As for δQw(�)-
dependence, shown in Figure 3, its form is essentially different
from that of Qw(�): δQw(� , 1) ≈ � and δQw(�f ∞) ) 1/2.
Moreover δQw(�) has a weak (not pronounced) maximum at �
) �m ≈ 2.0.

It is of great interest to compare these theoretical predictions
with experimental results of the type given in refs 12-15 but in
the presence of an electric field.

2. Transient Photocurrents. Recently, considerable interest
has been attracted to experimental investigations of the recom-
bination kinetics of ion pairs by time-resolved measurements
of transient photocurrent.24-26,33 The photocurrent is found to
be fairly sensitive to the spatial evolution of photoinduced ion
pairs and to the recombination kinetics.

The proposed theory is very helpful in the interpretation of
experiments on transient photocurrents. The fact is that the TSM
considered above enables one to quite accurately and easily
describe the spatial evolution of ion pairs without solving the
Smoluchowski equations which are rather complicated even for
restrictive models of the interparticle interaction. In this short
discussion we will outline and illustrate the possibilities of the
TSM approach.

Recall that the TSM is valid in the limit of the time τc of the
PDF relaxation in the well much shorter than the average
lifetime τj0 ) wj 0

-1 in the well (according to eq 3.23 wj 0
-1 ∼

(we
0)-1,wr

-1). Noteworthy is also that the TSM describes the
kinetics at relatively long times t > τc. In reality, however, the
method can straightforwardly be extended to also treat the PDF
relaxation at short times t e τc (i.e., relaxation within the well)
just because of assumed essential difference between thermal-

ization time τc and τj0. This difference enables one to describe
intrawell relaxation and well depopulation separately.

The initial stage of relaxation of the ion-pair PDF within the
well results in the transient photocurrent Je(t) at times t e τc.
The relaxation kinetics depends on the well shape. Below, for
simplicity, we will consider the case of a narrow well and
assume that the initial PDF in the well is isotropic. For narrow
wells the intrawell PDF relaxation can be separated into two
stages: radial and orientational relaxation, which differ in the
characteristic time. For the first stage (radial relaxation) this
time τw ) (a - d)2/D < d2/D is shorter than that τc ) Dc

-1 ≈
rb

2/D of the second stage (of orientational relaxation to the ion-
pair PDF in the well of the potential uf(r) (2.4)).

Together with the final stage, described by the TSM, the
current relaxation kinetics can be represented as follows:

1. At t ∼ τw (the stage of radial relaxation in the well) the
transient current can approximately be described by

where J0 ) eDf is the current produced by freely diffusing the
ion pair and Jj0 ) (2/3)J0 is the final current after radial relaxation
(see eq 5.4).

2. At t ∼ τc (the stage of orientational relaxation in the well)
the current Je(t) can be evaluated using the relation Jje ) ṗ(t),
where pj(t) ) e〈rf(t)〉 is the average electric dipole moment of
ion pairs within the well, where rf is the projection of the interion
radius vector on the direction of the field: rf ) (r · f)/f. For the

case of a narrow well, ṗ(t) can be calculated in the limit of
weak external force f in the lowest order in f (in the linear
response approach)

where Dc ≈ D/rb
2.

3. At t > τc (the stage escaping from the well) the TSM
predicts the following expression for the current

Here

is the ion-pair survival probability.
Taking into account the difference of time scales of these

three kinetic stages, one can represent the current relaxation
kinetics by the combined expression

This simple expression allows one to describe fairly accurately
the specific features of Je(t) behavior in a wide time period. In
deriving eq 5.7, we have assumed the well to be narrow. As
already noted, this assumption (as applied to ion pair recom-
bination) is quite appropriate in the limit of a relatively polar
solvent with dielectric constant εs > 15, in which the ion-pair

Figure 3. The comparison of time (τ ) tD/a2) dependences of the
ion-pair survival probability ns(τ) and the normalized transient current
je(τ) ) Je(τ)/J0, calculated analytically with eqs 5.6 and 5.7 (full lines)
and numerically33 (dashed lines). The parameters used are presented
in section V.C.

δQn(�) ) δwj 0/we
0(�) ) Qn(�) - 1 (5.1)

δQw(�) ) δwj 0/(we
0e2�) ) Qw(�) - e-2� (5.2)

Je(t) ≈ Jj0 + (J0 - Jj0)e
-t/τw (5.3)

Je(t) ≈ Jj0e
-2Dct with Jj0 ) 2

3
J0 (5.4)

Je(t) ≈ J0ne(t) with ne(t) ) ns(t) - n(t) (5.5)

ns(t) ) 1 - wr ∫0

t
dτ n(τ) (5.6)

je(t) ) Je(t)/J0 ≈ 1
3

(2 + e-t/τw)e-2Dctn(t) + ne(t)

(5.7)
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MFP u(r) is known to be of the shape of deep narrow well at
short distances r ∼ d.27,28 We have also neglected the contribu-
tion to the second stage of Jc(t)-relaxation caused by the (small)
decrease of the well population at t < 1/Dc [∼ṅ(t)], which in
the limit of a deep well is small.

Formula 5.7, however, turns out to be of quite reasonable
accuracy even in the case of pure Coulomb potential u(r) ) a/r
with a nearly reflective (low reactivity) boundary condition at
r ) d, whose well (at r g d), at first sight, can hardly be treated
as narrow for a . d. Reasonably good accuracy of eq 5.7 in
this case results from the cusplike shape of the well at r ∼ d,
where the major part of the well population is localized (see
below).

To demonstrate the accuracy of eq 5.7 we will compare its
predictions with recent calculations of the current relaxation
kinetics based on numerical solution of the Smoluchowski
equation.33 These calculations have been made for u(r) ) a/r,
with a ) 63.3 A, and small force � ) 0.05, which only weakly
affects the escaping rate wj e. Other parameters of the model are33

the coefficient D ) 3.1 × 10-5 cm2/s of relative diffusion of
ions, the contact distance d ) 9 Å, and the reactivity σr at a
contact distance r ) d, defined by D[∇rF + (∇ru + f cos θ)F]|r)d

) F(σr/4πd2)|r)d, whose value σr ) 0.01(4πDa) corresponds to
weak reactivity.

Recall that the discussed TSM is applicable in the limit γe )
(a2we

0/D)1/2 , 1 (see eq 4.12). For parameters of the model
chosen above, however, γe ≈ 0.9; i.e., the TSM is not expected
to reproduce the exact numerical results very accurately.
Nevertheless, even in this case the accuracy of the TSM appears
to be quite good (see below).

Noteworthy is also that in the considered model assuming a
not very deep well of cusplike shape the quasi-equilibrium PDF
in the well is somewhat displaced to r > d. In this case, with
reasonable accuracy one can put rb ) rj ) ∫d

∞ dr re-u(r)/Zw ≈ 20
Å so that Dc ≈ 8 × 108 s-1 (eq 5.4). For this value of rb one
can also approximately estimate τw

-1: τw
-1 ≈ D/(rb-d)2 ≈ 3.1

× 109 s-1.
For the chosen parameters of the model the survival prob-

ability ns
∞ ) ns(tf ∞) ≈ 0.085.33 Taking into account that the

TSM exactly predicts the asymptotic (at t f ∞) behavior of
the well depopulation kinetics, we can write the relation ns

∞ )
wj e/wj 0 ) wj e/(wr + wj e) ) 0.085.

Figure 3 displays the comparison of the analytically evaluated
time-dependent survival probability ns(t) and transient current
Je(t) with those calculated by numerical solution of the Smolu-
chowski equation.33 For convenience of the comparison in Figure
3 we use the dimensionless time τ ) Dt/a2. The comparison
shows good accuracy of the TSM prediction for the kinetics
ns(t), which is determined by the evolution of the system at
long τ > 0.1. As for the time-dependent transient current Je(τ),
it is also quite accurately reproduced by the TSM at long times,
when it is controlled by ns(t) kinetics. Some difference between
analytical and numerical behavior at shorter times τ < 0.1 is a
result of above-mentioned approximations applied in deriving
eq 5.7 for Je(t) at first two short time stages of the current
relaxation.

C. Optical Tweezers. The important problem, which has
recently attracted much attention, and in the study of which the
TSM can be very fruitful, is the kinetics of trapping of colloidal
particles by optical tweezers, i.e., by the optical force induced
potential wells.34,35 Detailed experimental investigations show
that the tweezers potential well u(r) is highly localized (the size
is about a micrometer).39 Of course, in general the well is not
quite spherically symmetric, but to a good accuracy, for

description of trapping and escaping kinetics one can neglect
this anisotropy.

Application of the TSM can significantly simplify the
problem of description of the kinetics of trapping into and
escaping from tweezers potential well thus allowing for the
analysis of more complicated effects of a large number of
potential wells.40

Of special interest is the effect of well motion on the trapping/
escaping kinetics.41 This effect is known to reduce to that of
the external force discussed above. The fact is that the well
motion induces the force Fv acting on a particle. In the frame
of reference, moving with the well, the force is proportional to
the well velocity v: Fv ) µ-1v, where µ ) D/(kBT) is the
mobility of the particle, i.e., fv ) D-1v. Note that this relation
holds in the case of time-dependent velocity v(t) as well.

Thus the problem of the analysis of the effect of the well
motion is equivalent to that of the external force f ) fv. In our
consideration we have assumed that f is independent of time.
The case of time-dependent f (for example, because of time-
dependent velocity v(t)) is, in general, much more complicated
and can hardly be analyzed analytically. However, in a quite
realistic case of relatively slowly changing force, for which the
characteristic changing time τf > 1/wj 0, one can treat the force
effect adiabatically evaluating the nearly exponential escaping
kinetics with the use of formulas derived above for static f, in
which the escaping rate wj e(�) is replaced by the corresponding
time-dependent expression wj e(�(t)).
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Appendix

Formulas 3.13-3.14 allow us to evaluate the operator Ĝ-1(a,
a|ε) in analytical form. In the evaluation it is worth taking into
account the useful relation which simplifies the differential
operator in the radial space

where λ̂f ) D(∇r
2 + r-2L̂θ - 1/4 f2).

The evolution operator 〈a|(ε - λ̂f)-1|a〉 can be obtained42 with
the use of two linearly independent operator solutions ψ̂-(r)
and ψ̂+(r) of equation

in which the operator L̂θ is treated as a parameter. These
solutions satisfy two boundary conditions corresponding to those
given in eq 3.6 (after change of variable c(r) ) e-(frcosθ)/2ψ(r))

where ω̂ ) ∑l,l′)0
∞ |l〉〈l|cos θ|l′〉〈l′| is the matrix representation of

the function cos θ. The matrix elements 〈l|cos θ|l′〉 ) 〈l|P1(cos
θ)|l′〉 are evaluated analytically36 though the corresponding
formulas will not be needed in our further analysis.

Both solutions ψ̂+(r) and ψ̂-(r) are expressed in terms of
matrices of Bessel functions Kl+(1/2)(x) and Il+(1/2)(x)37

〈a|(ε - Λ̂f)
-1|a〉 ) 〈a|(ε - λ̂f)

-1|a〉 (6.1)

(ε - λ̂f)ψ̂( ) 0 (6.2)

(∇r +
1
2

fω̂)ψ̂-|
r)a

) 0 and ψ̂+|
rf∞
f 0 (6.3)
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where � ) fa/2, �ε ) �(1 + ε/εf)1/2, εf ) Df2/4 ) (D/a2)�2,
and κ̂ is the matrix determined by the boundary condition at r
) a (see eq 6.3)

in which

It is worth noting that the matrices K̂ and Î do not commute
with ω̂ and, therefore, the order of matrices in the products of
the matrices in expressions 6.5 and 6.6 is important. As a result
of these special commutation properties of the matrices, the
matrix solutions ψ̂+(r) and ψ̂-(r) do not commute either.

Representation of the operator 〈r|(ε - λ̂f)-1|ri〉 in terms of
noncommuting solutions ψ̂+(r) and ψ̂-(r) is proposed in ref 42.
It generalizes the well-known one for scalar solutions ψ+(r)
and ψ-(r). In general, the proposed representation is fairly
cumbersome. In the particular case of solutions given by eq
6.4, however, it reduces to a more simple one

Here ŴÎK̂ ) D[∇rÎ(r)K̂(r) - ∇rK̂(r)Î(r)] ) D is the Wronskian
of two solutions and

is the evolution operator for κ̂ ) 0 in which θH(x) is the
Heaviside step function.

The validity of the expression 6.8 can be verified by direct
substitution to the inhomogeneous variant of eq 6.2 with the
delta-function in the right-hand side.

For the particular case r ) ri ) a formula 6.8 yields

where q̂K(ε) ) -∇rK̂(r)/K̂(r)|r)a ) ∑l)0
∞ |l〉qKl

(ε)〈l| with qκl(ε) )
a-1[l + �ε Kl-(1/2)(�ε)/Kl+(1/2)(�ε)].

Substituting the expression 6.10 into eq 6.1 and then into
eqs 3.13 and 3.12, we obtain formula 3.16.
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X̂(r) ) √r ∑
l)0

∞

|l〉Xl+(1/2)(�εr/a)〈l| (6.4)

X ) I, K:

ψ̂+(r) ) K̂(r), ψ̂-(r) ) Î(r) + K̂(r)κ̂ (6.5)

κ̂ ) [∇rK̂(r) - q̂K̂(r)]-1[q̂Î(r) - ∇rÎ(r)]|
r)a

(6.6)

q̂ ) a-1(1 - �ω̂) ≡ a-1(1 - � cos θ) (6.7)

〈r|(ε - λ̂f)
-1|ri〉 ) ĝ(r, ri) + K̂(r)κ̂K̂(ri)ŴÎK̂

-1

(6.8)

ĝ(r, ri) ) [K̂(r)Î(ri)θ(r - ri) + Î(r)K̂(ri)θ(ri - r)]WÎK̂
-1

(6.9)

〈a|(ε - λ̂f)
-1|a〉 ) D-1[q̂ + q̂K(ε)]-1 (6.10)
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